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ABSTRACT

A new on-line method is presented for estimation of the angular random walk
and rate random walk coefficients of IMU (Inertial Measurement Unit) gyros
and accelerometers. The on-line method proposes a state space model and
proposes parameter estimators for quantities previously measured from off-
line data techniques such as the Allan variance graph. Allan variance graphs
have large off-line computational effort and data storage requirements. The
technique proposed here requires no data storage and computational effort of
0(100) calculations per data sample.
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On-line Estimation of Allan Variance Parameters

EXECUTIVE SUMMARY

Inertial navigation is an important technology in which measurements provided by gyro-
scopes and accelerometers are used to determine position for modern aircraft. Because of
the importance of these devices in modern navigation, a full understanding of their noise
characteristics is important.

The most commonly used tool for analyzing the noise characteristics of gyros and ac-
celerometers is the Allan variance graph method which suffers from several deficiencies.
The Allan variance graph method requires the data to be collected off-line before process-
ing can be performed. It also requires the user to read slopes and intercepts manually off
the Allan variance graph so that noise characteristics can be calculated.

The key contribution of this paper is a new technique that can analyze data as it is received
and calculates on-line the contribution from various noise sources. The proposed method,
unlike the Allan variance graph method, does not require large amounts of data to be
stored. The proposed method also has the additional advantage, if the data set is large,
of requiring less computational effort overall.

Convergence results are presented for the proposed technique based on the law of large
numbers and an ordinary differential equation approach. The technique is verified on
both simulated data and data obtained from a HG1700-AEll Honeywell IMU (Inertial
Measurement Unit) by comparison with the results from an Allan variance graph analysis.

The new methodology represents a fundamental improvement in the testing procedures for
inertial navigation systems and will enable a more efficient response to ADF requirements
for IMU modelling in support of weapon system performance assessments.
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1 Introduction

Inertial navigation is the process by which measurements made using gyroscopes and
accelerometers are used to determine position[l, 2]. Inertial navigation is an essential
technology for modern aircraft and an important tool for navigation in general. Ac-
celerometer and gyro IMUs (Inertial Measurement units) suffer from particular types of
noise interferences which induce IMU navigation errors which grow with time. Because
of the importance of systems with these characteristics, a vast amount of analysis of this
type of noise has been performed, including: frequency fluctuations in atomic clocks[3],
noise from ring laser gyros[4] and gyro sensors in general[5, 6].

Characterizing noise produced by IMU sensors by a single RMS number was overly con-
servative in the short term and did not adequately model the longer term error growth.
The Allan variance method was developed to better characterize the noise model and is
now the standard method of analysis[6]. The Allan variance, A(N), of a sensor output is
the variance of the means of successive subsets of the data of size N.

When the Allan variance, A(N), is plotted against the sample size, N, particular noise
features in the gyro output appear as structures in the Allan variance curve, as illustrated
in [4, 6, 7] and Figure 5 in this paper.

There are several disadvantages of the Allan variance technique. Obviously, by its very
nature, it is an off-line process and requires a large amount of data to be stored. Addi-
tionally, the technique requires that lines of best fit be manually placed on the graph and
intercepts to be read off to obtain estimates of the noise contributions. Unfortunately,
the Allan variance technique does not characterize the noise well when contributions from
various sources overlap on the Allan variance graph.

This paper works in the stochastic model framework proposed in [5]. From this stochastic
model, we develop a state space model that models only the noise contributions from the
angular random walk (ARW) and rate random walk (RRW).

The key contribution of this paper is the proposal of on-line parameter estimation al-
gorithms for the ARW and RRW constants. Global and local convergence results are
established in several stages using the law of large numbers and an ordinary differential
equation approach. Unlike the Allan variance technique, the proposed parameter estima-
tors do not require large amounts of data to be stored and only require approximately 100
calculations per time step. For larger data sets, greater than 10000, the proposed on-line
technique is computationally superior to the Allan variance technique (a typical data set
might contain 24hrs of 1Hz measurements, ie. - 107 data points)

Simulation studies are presented both for computer generated data and for data from a
Honeywell IMU. Results from the on-line estimation algorithm are compared to estimates
from the Allan variance technique.

This paper is organized as follows: In Section 2, we introduce a state space model for
angular and rate random walks. In Section 3, parameter estimators are introduced and a
partial convergence result is established in the situation, admittedly artificial, when the
error model state variable is measurable. In Section 4, we introduce a conditional mean
estimate and an estimation algorithm for the more realistic situation where only output
measurements are available. Local convergence results are established using an ordinary
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differential equation approach. In Section 5, implementation issues are discussed including
initialization, computational effort and techniques for improving convergence rates from
poor initializations. Simulation studies are presented in Section 6. Finally, in Section 7
some conclusions are presented.

2 Stochastic Model

Gyro sensor error dynamics can be modelled by the discrete-time stochastic model pre-
sented in Figure 1, see also [7, 4]. In this model there are contributions from angular
random walk noise (WD), rate random walk noise (WB), flicker noise (F) and ramp noise
(R). Not shown on the figure are contributions from quantization noise, Markov noise, or
sinusoidal errors.

Angular
random
walk WD

D Angle

RateRate

Random WBj AOwalk 

4

F R
Flicker Ramp
noise noise

Figure 1 (U): Stochastic Model

The terms "angular random walk" and "rate random walk" are slightly misleading because
angle rate AO is often measured directly and these terms would normally be seen from
a linear system's viewpoint as measurement noise and process noise (which produces a
classical random walk in the output).

In this paper, we propose a simplified stochastic model in which the only non-zero con-
tributions are the angular random walk and rate random walk terms. This simplification
seems appropriate for some of the sensors that have been examined via the alternative
Allan variance graph technique. Consider Figure 5 in this paper which shows the Allan
Variance plot for the output of the gyro examined in this paper. The dominate noise
sources appear to be an angular random walk component (the - 1 slope part of the curve)
and a rate random walk component (the +½ slope curve). A discussion of Allan variance
plots can be found in [4, 6, 7].

The simplified stochastic model shown in Figure 2 can be represented as a state space
model. The unknown angular random walk and rate random walk coefficients are param-
eters of this representation. Estimation of these quantities can then be examined from a
linear system's viewpoint[8, 9, 10]. In the following section we define our mathematical
framework for the parameter estimation problem.

2
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Angular
random
walk WDRateD

Random Angle
walk Rate

WB AO

Figure 2 (U): Simplified stochastic model

2.1 State Space Model

Consider a probability measure space (QT, P). Here Q is an arbitrary space or set
of points w, YT is u-algebra in 92 (a class of subsets containing Q and closed under the
formation of complements and countable unions) and P is a probability measure on Y.

See [11, Pages 17-23] for more details. In some sense, each point w corresponds to a triple
({wt}, {vj}, xo), where Wk, vk and x0 are defined below. Suppose {rx}, t E Z+ (Z+ is
the set of positive integers) is a discrete-time linear stochastic process, taking values in R,
with dynamics given by

Xk+1 = Xk + VB wk+l, xo E R (2.1)

Here k E Z+, -V is the rate random walk coefficient and {we}, t E Z+, is a sequence
of independent and identically distributed N(O, 1) scalar random variables. The notation
N(O, 1) is short hand for a random variable whose density is Gaussian with zero mean and
variance 1.

The state process xe, t E Z+, is observed indirectly via the scalar observation process

{yj}, t E Z+, given by
YA = Xk + 11D Vk E R (2.2)

Here k E Z+, '/• is the angular random walk coefficient and {ve}, f E Z+, is a sequence
of independent and identically distributed N(O, 1) scalar random variables. We assume

that xO, {we} and {ve} are mutually independent. The sequence {Yk} is the sequence
of angle rates measured by the IMU (or AO in Figure 2). The variance of noise WB is
B and the variance of noise WD is D. We have considered here only single axis devices
but in principle this technique can be extended to 3 dimensions with B and D becoming
covariance matrices.

Let 9k and Yk denote the complete filtrations generated by {xj} and {yt} respectively.
For example, 9k is the u-algebra generated by xo,x1, ... ,Xk, denoted ao{xo,x1, . . . ,xk,
augmented by including all subsets of events of probability zero. See [12] for more details
about filtrations.

The model described by (2.1),(2.2) is denoted by

A = A(B, D, xo) (2.3)

In this paper we will present convergence results that hold almost surely. We will say
that in a probability space (Q, Y, P) a result holds almost surely (a.s.) if it holds with

3
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probability 1, or equivalently that it holds for all w in an 9v-set of probability 1 where

w E [. We are concerned with convergence so consider the following illustration. Let

z, zj, z2 ,... be random variables. If
lim Zk(W) = z(w) (2.4)

k- oo

for all w in an .F-set of probability 1, then

lim zk = z almost surely or a.s. (2.5)
k---+o

A weaker convergence condition is that

lirn P[Izk(w) - z(w)I I E] = 0 (2.6)
k---o c

which is called convergence in probability and is equivalent to mean square convergence.

Note that almost sure convergence implies convergence in probability but convergence in

probability does not imply almost sure convergence.

3 Parameter Estimation - Full Observations

In this section we assume that both {Xk} and {Yk} axe fully observed. The results in
this section for the full observation case are presented as a stepping stone to the more
interesting and general results that follow.

From (2.1), with simple manipulation then squaring both sides and summing over k we
obtain,

k k

B3 wX = Z(x x1) 2 . (3.1)

Now consider the matrices

k k
Ak = Exixi-l) Ok =EXi2

i=1 i=l

k k

i-1 and Mk =Ew?. (3.2)
j=1 i=1

From (3.1), we see that

BMk = Ok + Hk - 2Jk (3.3)

Similarly, from (2.2) with simple manipulation then squaring both sides and summing over
k we obtain,

k k
D • v2 = E(Y_- x,)2. (3.4)

i=1 j=l

Now consider the matrices
k k

Tk = ViXi, Qk =E y and
i=1

k

Vk = v . (3.5)
i=4

4
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From (3.4), we see that
DVk=--Qk +Ok -2Tk. (3.6)

3.1 Almost Sure Convergence

Lemma 1 Consider the linear system (2.1),(2.2) denoted A. Suppose {Xk} and {Yk} exist
and are measured, then

lim Bk,Dk = B, D a.s. (3.7)
k---oo

where

-k - Ok + Hk- 2 Jk and
k

bk - Qk + Ok - 2 Tk

k

Proof: Consider estimate B3k first.

Rewrite the estimate as
fbk = BMk(38B k (3.8)

k

By the strong law of large numbers [11, Page 85], limk-4 ,o 'Mk = 1 a.s.. The lemma

results follows from (3.8). The lemma result for Dk follows similarly.

3.2 Finite Data Sets

Lemma 2 Consider the linear system (2.1),(2.2) denoted A. Suppose finite date sets
{xo,0 x,..., XT} and {YoY,..., YT} are measured, then

P(IBT- BI > E) < B

D (9
P(]D)T - DI > ,E) <_ D (3.9)

Proof: Follows from a similar argument as Lemma 1 by using the weak law of large
number[11, Page 86]. 0

Remarks

1. Lemma 2 is a weaker convergence result than Lemma 1 in the sense that in the limit
as T --+ c a convergence in probability result rather than an almost sure convergence
result is established.

5
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4 Conditional Mean Estimates

In this section we consider parameter estimation based on conditional mean estimates
in lieu of the true states. We define a model set, A := {A(B,D,xo)IB,D,xo E R}, of
allowable model estimates Ak E A and assume the true model, A, lies in the model set A.
We denote the history or sequence of estimates as Ak := {A1,..., Ik}. Let us denote the
associated conditional mean estimates based on the model estimates, Ak, as

JkIk,Ak = E[JklYk,Ak], Oklk,Ak = E[OkIYk, A,k
HkIkAk = E[HklYk,Ak] and TkIkAk = E[TklYk, Ak], (4.1)

Optimal finite dimensional recursions for these conditional mean estimates can be found
in [13]. Hence, we propose estimators for B and D based on observations {Yk} as:

B•k proj (OkIk'k, + klk',k-2jklk']kk (4.2)

D proj (Qk+6k'k -- 2
1kklkk) (4.3)

Dklk,k = projk

where

ýk+l= \(!1k , kIhk'b 0) and

!Ak+l - {A1 ,''',Ak+l}, (4.4)

and proj(x) = max(6, x) where 0 < 3 < B, D is a small constant, and ensures f}klk and

bklkk remain positive.

We consider first the situation in which conditional mean estimates based on the true
model A are available.

Lemma 3 Consider the linear system (2.1),(2.2) denoted by A. Suppose {yk} exists and
is measured. Also assume that conditional mean estimates based on the "correct model"
are available. Assume the true model A satisfies A E A. Then

lim k kkA, Dklk,A = B, D a.s. (4.5)k--+oo

Proof: The proof follows Lemma 1. We consider estimation of B first. We rewrite the
estimate (4.2) without the projection step as

E[BMkIYk,A] BE[MklYk, A]
BkIA k k (4.6)

Hence, the estimate is

=~J B(E[Mk)lYkA]

-BE[jIYk,AX]

-BE [E [•ý-k-Yk,\]I Yk, X]

6
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Hence,
lim BkJX = B a.s.. (4.7)

k-+oca

Here, we have used that E[XIA1] = E[E[XIA 2]1A 1 ] when A1 C A2 and the strong law of
large number result limk-w 1E [Mk gk] = 1 a.s.. Also, because Ok -= E [Mklgk, Yk, A] is
uniformly integrable (that is E[OkO'] is bounded) and limk--• bk = 1 a.s. then there is
convergence in conditional mean:

lim E[qk1Yk, A] = 1 a.s.

k--+oo

The lemma result follows for !Dkp similarly.

0

Remarks

1. A finite date set result which extends the above Lemma can be established using the
weak law of large numbers.

The following theorem holds.

Theorem 1 Consider the linear system (2.1),(2.2) denoted by A. Consider a sequence
of estimated models Ak adaptively updated by previous parameter estimates as shown in
(4.4). Then the recursion converges almost surely to the set S (or possibly the projection
boundaries B = 6 and D = 6), where

S := local arg min E [((Xk - Xk1) 2 _ B) + ((Yk - X0)2 
-)

2 Iykl (4.8)
B,D

where A = ,(B, D, to). That is, S contains the local minimum of the cost function

E [((Xk-Xk- 1 )2B__[) 2 + ((Yk -X0)2 _b) 2 IX'yk] .

Proof First we consider estimation of B only. Simple manipulation of (4.2) gives a
recursion for the estimate Bklk ,k as follows:

Bk = 1 B k (A+k + A-gk - 2AJk - k-l) (4.9)

where we denote Bklk,&k by the shorthand notation Bk and define A0k := 0 klk,Ak -

6k-lJk-1,Ak_ and similarly define AHk and AJk. To simplify the presentation we will
ignore the projection step. Convergence results will still hold if projection is performed,
see Ljung [14].

We follow the technique presented in [8]. This proof relies on the ordinary differential
approach described in [14, 15, 16]. In the ODE approach, convergence of a difference
equation is established by considering the convergence properties of an associated ordinary
differential equation.

7
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Convergence of (4.9) can be analyzed by considering the following ordinary differential
equation,

dB(-rk) - f(B(r, k), k) (4.10)
di-

where k is here a fixed parameter. Also, with B(T, k) abbreviated as P, we define f(P, k)
as follows:

f(B, k) := E[A0klA + A!Hklp - 2AJkIF - B] (4.11)

Here we have explicitly shown in the notation used that A~k etc. depend on the parameter
estimate B.

In Ljung [14], it is stated that (4.9) will converge to the set S or a boundary, where
S:= {/BI limk,,oo f!(B, k) = 0}, if the following hold:

1. Certain regularity and exponential stability conditions hold as listed in [14].

2. The ODE (4.10) (which is parameterized by k) is asymptotically stable in the limit
as k -4 oo.

The satisfy condition 1 we require the conditional mean filters for Jk,,k,,Oklkk' 0k kk

and Tklk,,k to be exponentially forgetting (which has not been shown yet but which we will
assume to be the case) and regularity conditions for this system are shown and discussed
in [8, 14].

To establish condition 2 we use a Lyapunov function approach. Consider the function,

W(B, k) = 2E [((Xk - Xk-1 (4.12)

It follows from classical expectation results, including that E[E[XIA 2]IAi] = E[XIAi]
when A 1 C A2, that W(B, k) _ 0. Under asymptotic ergodicity and certain smoothness
conditions the differentiation w.r.t. P and the expectation operations can be interchanged.
Hence,

dW(B(,-, k), k)
dB (7, k) = -f(B!(, k), k) (4.13)

and it then follows that

dW(B(7-, k), k) dW( (P , k), k) dB(r, k)
d- d dB(-r, k) dT

= -f(B(-r,k),k)kf(B(QT,k),k). (4.14)

It follows that W(B, k) is a Lyapunov function.

It follows from Lynapov's direct method and equation (4.13) that f3(7-, k) converges to the
set {/BI limk--4 f(P, k) = 0} (or possibly to the boundary B = 6 if a projection step is
implemented). Convergence of the difference equation (4.9) follows from Ljung[14].

We note that under asymptotic ergodicity (and other regularity conditions given in Ljung
[14] and shown in [8]) and using the results in Ljung [14] that the difference equation

8
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(4.9) and the ODE (4.10) converge to the same set. That is, in the limit k -+ oo
convergence to the set {BA limk-4. f((B, k) = 0} is equivalent to the local minimum of

E [((Xk - XkA - f3)2 IAYkl.-
The result for simultaneous estimation follows using a similar approach by writing the
estimate bDkjkAk as a recursion and using the Lyapunov function,

W(B, D, k) = 2 (.E [((X,, - Xk-)- + E [((Yk - Xk) )1 (4.15)

Note that only a local convergence result is established in the simultaneous estimation
case because the set S may contain more than one point.

0

Remarks

1. This establishes local convergence to the true model because it follows from Lemma 3
that A E S.

2. Convergence rates have not been established but can be shown using an approach
similar to [8].

3. Local convergence results for estimation from finite date sets can be established in the
off-line situation when the recursions (4.2)-(4.3) are passed over the data set multiple
times and the model estimate is updated after each pass. In this multi-pass off-
line situation the estimators are an example of the EM (expectation-maximization)
algorithm and local convergence results are available [17]. Convergence results in the
situation of a single pass through a finite data set which are analogous to Lemma 2
have not yet been established.

5 Implementation

In this section we discuss some implementation issues relating to the above algorithm.

Filters

To implement the estimator defined by (4.2)-(4.4) requires the quantities 0klk,£&, Oklk,£&'

H•lk,ýk, and Tklk,Ak as defined in (4.1) to be calculated. Optimal finite dimensional recur-

sions for klk, 0 klk ,Ak' H-kk,:ký and Tkjk,,k are given in [13].

On-line or batch processing

It is possible to use the algorithm presented in this paper in both an on-line and batch
manner. The recursion (4.2)- (4.3) can be iterated as each new data point arrives to produce

9
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a new estimate. Alternatively, if only a finite data set is available then the algorithm can

be iterated through the data set multiple times with the parameter estimates improving

on each successive pass through the data.

In a multi-pass, situation convergence results follow by considering the data set as the

concatenation of copies of the finite data set (sometimes know as the periodic extension of

a finite signal) and then convergence occurs to a minimum of (4.15). It has been shown that

resolution errors result from working on a finite date set[18]. These resolution errors will

be apparent on this concatenated data set and estimation bias will result. The estimation

error will consist of two components as follows:

(BklkAk - B)2 = B2 + By (5.1)

The error BL is a bias due to using a finite data set and By is the estimation variance of

the estimator. The estimation variance By can be reduced by increasing the number of

passes through the data while BL depends only on the finite data set.

Initialization

The algorithm requires an initial guess for the ARW and RRW coefficients. In our experi-

ence the algorithm will converge to the true ARW and RRW coefficients from a reasonable

initialization. In particular, for the studies presented below, convergence to the true val-

ues occurs whenever B0 is significantly smaller that D0 . For typical applications (IMU

measurements) this requirement is not restrictive.

The filters from [13] should be allowed some data to initialize and we suggest that these

filters be iterated for at least 500 data points before parameter estimation is started.

Improved Convergence Rates

The rate of convergence of the adaptive algorithm (4.2)-(4.4) from initial parameter es-

timates can be improved. Using the difference form of the estimators, ie. (4.9) etc.,

convergence rates can be improved using the Polyak technique [19]. That is,

Bk+llk+lAk+l -:- Bkkk + -1k (S•Okjk,7k + AHk-Iklhq -- 2SJkkk - -- tBklkAk) (5.2)

where 7k = -L and 0 < p < 1 and similarly for the D estimate. The estimates are then

averaged. The convergence results still hold.

Other techniques such as forgetting factors can also be useful[14].

Computational effort

The computational effort required to implement the recursions (4.2)-(4.4) is approximately

100 floating point calculations per data point (and does not depend on the length of

the data). This includes implementation of the optimal filters for JklkAk etc. Issues

of computational effort for the Allan variance technique are not discussed in the given

10
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references and will depend on implementation choices. If the data set has T points, then
to calculate the Allan variance of size N requires 0 (T(l + 3/N)) (or order(T(1 + 3/N)))
calculations. Because Allan variance is plotted on a log-log graph, the Allan variance
needs at least K log(T) points to be plotted where K is the number of points per order
of magnitude. The computational effort is hence at least O(KT log(T)) compared to the
O(100T) required to implement (4.2)-(4.4).

For large data sets the estimators presented here are clearly computationally superior. The
exact number of points at which our on-line algorithm is computationally superior depends
on implementation choices. For example, if the Allan variance is calculated at log spaced
points and K = 10 starting at N = 2 then for T > 5000 (4.2)-(4.4) is computationally
superior. However, if calculated at log spaced points and K = 5 then the Allan variance
technique is computationally superior until T > 4 x 106. A typical data set might contain
24hrs of 1Hz measurements, ie. ; 107 data points. The recursions (4.2)-(4.4) always have
the advantage that the data does not need to be stored.

Numerical Overflow

If implemented in an on-line manner the algorithm will need to be modified to ensure
overflow of OkIkAk' etc. does not occur. Scaling or forgetting factors could be introduced
into the filters of [13]. Alternatively, the filters could be reset and then reinitialized on
data to avoid numerical overflow.

6 Simulation studies

In this section we examine the proposed technique for estimating the angular random walk
and rate random walk coefficients. First, we test the technique on computer generated
data with known noise characteristics. Secondly, we test the technique on data taken from
a real device, namely a Honeywell HG1700-AEll IMU. This device, contains ring laser
gyros and produces delta angle and delta velocity signals in the X, Y and Z directions.
We have used data from only the Y direction and have assumed that it is independent of
the other axes. The device was static.

6.1 Computer Generated data

These computer simulations were performed using the MATLAB package and matlab's
randn normal distributed noise sources.

A 40000 point sequence was generated for the linear system (2.1),(2.2) with B = 0.1
and D = 1. From initial estimates, B•0 = 0.3 and b0 = 1.5, the algorithm (4.2) was
implemented to produce new estimates of the B and D coefficients. The final estimates
after one pass through the data were B = 0.1008 and/D = 0.9991.

11
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6.2 The Honeywell IMU (HG1700-AE11)

Navigational data arrives from the Honeywell IMU at 600Hz and 100Hz. This data was
averaged to 1Hz before any estimation was performed to allow recording of reasonable
time lengths of data. Other transformations were performed on the data to scale the
output but these are not important in this discussion.

The recorded data were analyzed by the standard Allan variance graph techniques. Figure
5 shows the Allan variance graph obtained from analysis of a 80000 data point set. It
appears from the Allan variance plot that the dominate noise sources are angular random
walk and rate random walk which justifies our noise model assumption for this device.

From the Figure 5 the angular random walk and rate random walk coefficients can be
estimated, using the technique in [4]. To do this, lines of best fit are drawn on the parts
of log-log plot with slope -1/2 and +1/2. Then the coefficients can be calculated as
ARW = A.(2) = 5 ± 1 and RRW = A+(3)/v'2 = 0.08(+0.02 - 0.04) where A_(N) is
the value of the -1/2 line at N and A+(N) is the value of the +1/2 line at sample size
N.

The technique proposed in this paper is an alternative method for calculating these two
coefficients without producing the Allan variance graph.

The recursions with Polyak step, that is (5.2) with p = 0.5 for the B recursion and p = 1
for the D recursion and the model updated adaptively according to (4.4), were used to
estimate the parameters from the 80000 point set. The algorithm was initiated with
parameter estimates, B0 = 0.1 and D0 = 20.

The parameter estimates after one pass through the data were B = 0.0045 and D = 31.09

(or equivalently A:R-W =-\I --- 5.6 and RRW = VB = 0.0668). In Figures 3 and 4 the
evolution of parameter estimates versus time is shown. These final estimates are within
the error bounds of the estimates from the Allan variance graph as shown in Table 1.

Table 1 (U): Comparison of Estimated Parameters
Allan Variance On-line Recursions

ARW 5 ± 1 5.6

RRW 0.08(+0.02 - 0.04) 0.067

Various other initializations (Bfo and Do) were tried including: B0 = 0.1 and D0 = 1;
ho = 0.3 and Do = 1.5; amongst others. Convergence occurs when Bo </D0 . Note that
both the Allan variance graph method and the method proposed here require large data
sets to enable estimation of B. Estimation of D can be done on smaller data sets.

6.3 Discussion

Good choices for p in the step modified estimation algorithm will depend of the relative
power of the w and v noises. The Honeywell IMU's major source of noise is angular
random walk. Increasing the step size for the B recursion allows the recursion longer time

12
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to forget initial estimates (relative to the D recursion) and this facilitates convergence
from poor initializations.

7 Conclusions

This paper presented a new technique for estimating the noise model of IMU gyros. The
existing techniques for analysis of IMU gyros require large amounts of data to be stored
and to be processed off-line to produce an Allan variance graph. The technique proposed
here can analyze data on-line as it arrives from the gyro and can produce immediately

estimates of the noise model in the sense that it does not require the user to manually
analyze an Allan variance graph.
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Figure 3 (U): Estimates of ARW versus time.
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Figure 4 (U): Estimates of RRW versus time.
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